[1] Akahira, M. and Ohyauchi, N. (2002). Information Inequalities for the Bayes Risk for a Family of Non-Regular Distributions. Annals of the Institute of Statistical Mathematics, 54(4), 806–815.
[2] Akahira, M. and Sato, M. (1996). An information inequality for the Bayes risk. The Annals of Statistics, 24(5), 2288-2295.
[3] Alvo, M. (1977). Bayesian sequential estimation, Ann. Statist., 5, 955–968.
[4] Brown, L. D. and Gajek, L. (1990). Information Inequalities for the Bayes Risk. The Annals of Statistics, 18(4), 1578-1594.
[5] Eubank, R. L and Lariccia, V. N. (1982). Location and Scale parameter estimatiom from random censored data. Comm. Stat. A-Theory Methods, 11, pp. 2869-2888.
[6] Gajek, L. (1987). On minimax value in the scale model with truncated data. Ann. Statist, 16, pp. 669-677.
[7] Gajek, L. and Ghater, U. (1991). Estimating the scale parameter under random censorship. Statistics, 22, pp. 529-549.
[8] Gardiner, J. C. and Susarla, V. (1984). Risk-efficient estimation of the mean exponential survival time under random censoring, Proc. Nat. Acad. Sci., U.S.A., 81, 5906–5909.
[9] Gardiner, J. C. and Susarla, V. (1991). Some asymptotic distribution results in time-sequential estimation of the mean exponential survival time. Canad. J. Statist., 19,425-436 .
[10] Gardiner, J. C. and Susarla, V. and Ryzin, J. van. (1986). Time sequential estimation ofthe exponential mean under random withdrawals, Ann. Statist., 14, 607–618.
[11] Kaluszka, M. (2007). Information inequalities for the Bayes risk of predictors, Probability and Mathematical Statistics, 27(2), 167-179.
[12] Koziol, J. A. and Green, S. B. (1976). A Cramer-Rao Mises statistic for randomly censored data. Biometrika, 63, 465-474.
[13] Lehmann, E. L., and Casella, G. (1998). Theory of Point Estimation, 2nd edition. Springer-Verlag, New York.
[14] Tahir, M. (1988). Asymptotically optimal Bayesian sequential point estimation with censored data, Sequential Anal., 7, 227–237.
[15] Magiera, R. (1977). On sequential minimax estimation for the exponential class of processes. Zastos. Mat., 15, 445–454.