مقایسۀ مدل‌های توزیع بتا-دوجمله‌ای دومتغیرۀ گسسته بر اساس همبستگی بین متغیرهای حاشیه‌ای

نوع مقاله : علمی- پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه آمار، دانشگاه علوم و فنون دریایی خرمشهر

2 استادیار، گروه آمار، دانشگاه پیام نور

چکیده

در این تحقیق برازش مدل‌های مختلف توزیع‌های بتا-دوجمله‌ای دومتغیرۀ گسسته، بر اساس همبستگی بین متغیرهای حاشیه‌ای مورد مقایسه قرار می‌گیرد. این مدل‌ها شامل مدل سه پارامتری بی‌بی و وات (2011)، مدل پنج پارامتری داناهر و هاردی (2005) و مدل تعمیم‌یافتۀ توزیع بتا-دوجمله‌ای دومتغیرۀ کلاسیک است که المو-جیمینز و همکاران (2011) معرفی کرده‌اند. نتایج حاصل از آزمون نیکویی برازش نشان می‌دهد که مدل المو-جیمینز و همکاران، برای مقادیر بالای همبستگی بین متغیرهای حاشیه‌ای، برازش بهتری نسبت به مدل‌های دیگر دارد و در مقادیر پایین همبستگی بین متغیرهای حاشیه‌ای، مدل داناهر و هاردی مناسب‌تر است. نتایج با استفاده از سه مثال واقعی بررسی شده است. 

کلیدواژه‌ها


[1] Alanko, T. & Lemmens, P.H. (1996). Response effects in consumption surveys: an application of the beta-binomial model to self-reported drinking frequencies. Journal of Official Statistics, 12(3), 253-273.
[2] Appell, P. (1880). Sur les séries hypergéometriques de deux variables et sur des équations différentielles linéaires aux dérivées partielles. Comptes Rendus, 90, 296-298.
[3] Bibby, B.M. & Væth, M. (2011). The two-dimensional beta binomial distribution. Statistics & Probability Letters, 81(7), 884-891.
[4] Danaher, P.J. & Hardie, B.G.S. (2005). Bacon with your eggs? Applications of a new bivariate beta-binomial distribution. The American Statistician, 59(4), 282-286.
[5] Fisher, R.A. Statistical methods for research workers. Genesis Publishing Pvt Ltd 1925.
[6] Gelman, E. & Sichel, H.S. (1987). Library book circulation and the beta-binomial distribution. Journal of the American Society for Information Science, 38(1), 5-12.
[7] Gupta, A.K. & Nadarajah, S. (Eds.). (2004). Handbook of beta distribution and its applications. CRC press.
[8] Hankin, R.K.S. (2006). Special functions in R: introducing the gsl package. R News 6(4), 24-26.
[9] Ishii, G. & Hayakawa, R. (1960). On the compound binomial distribution. Annals of the Institute of Statistical Mathematics, 12(1), 69-80.
[10] Johnson, N.L., Kemp, A.W. & Kotz, S. (2005). Univariate discrete distributions. John Wiley & Sons.
[11] Jones, M.C. (2001). Multivariate t and beta distributions associated with the multivariate F distribution. Metrika, 54(3), 215-231.
[12] Olkin, I. & Liu, R. (2003). A bivariate beta distribution. Statistics & Probability Letters, 62(4), 407-412.
[13] Olmo-Jiménez, M. J., Martínez-Rodríguez, A. M., Conde-Sánchez, A., & Rodríguez-Avi, J. (2001). A generalization of the bivariate Beta-Binomial distribution. Journal of Statistical Planning and Inference, 141(7), 2303-2311.
[14] Pham-Gia, T. & Duong, Q.P. (1989). The generalized beta-and F-distributions in statistical modelling. Mathematical and Computer Modelling, 12(12), 1613-1625.
[15] Sarmanov, O.V. (1966). Generalized normal correlation and two-dimensional Fréchet. In Soviet Mathematics. Doklady, Vol. 25, pp. 1207-1222.
[16] Skellam, J.G. A. (1948). Probability distribution derived from the binomial distribution by regarding the probability of success as variable between the sets of trials. Journal of the Royal Statistical Society. Series B (Methodological), 10(2), 257-261.
[17] Ting Lee, M.L. (1996). Properties and applications of the Sarmanov family of bivariate distributions. Communica-tions in Statistics-Theory and Methods, 25(6), 1207-1222.