[1] Aggarwala, R., Balakrishnan, N. (1998). Some properties of progressive censored order statistics from arbitrary and uniform distribiutions with applications to inference and simulation. Journal of statistical planning and inference, 70, 35-49.
[2] Balakrishnan, N., Cramer, E., kamps, U., sckenk, N. (2001). Progressive type II censored order statistics from exponential distributions. Statistics, 35, 537-556.
[3] Balakrishnan, N., Sandhu, R.A. (1995). A simple simulational algorithm for generating progressive type II censored samples .The American Statistician, Vol. 49, No.2. pp.229-230.
[4] Balakrishnan, N., Sandhu, R.A. (1996). Best linear unbiased and maximum likelihood estimation for exponential distribution under general progressive type II censored samples. Sankhya B, 58, 1-9.
[5] Bandyopadhyay, U., Chattopadhyay, G., (1995). Progressive censoring under inverse sampling for nonparametric two-sample problems. Sequential Anal., 14, 1-28.
[6] Davis, H.T., Feldstein, M.L. (1979). The generalized pareto law as a model for progressively censored survival data. Biometrica, 66, 299-306 .
[7] Fernandez, A.J. (2004). On estimating exponential parameters with general type II progressive censoring. Journal of statistical planning and inference, 121, 135- 147.
[8] Guilbaud, O. (2001). Exact non-parametric confidence intervals for quantiles with progressive type II censoring. Scand. J. Statis, 28, 699-713.
[9] Halperin, M., Hamdy, M.I., Thall, P.F. (1989). Distribution - free confiedence interval for a parameter of Wilcoxon-Mann-Whitney type for ordered categories and progressive censoring. Biometrics, 45, 509-521.
[10] Sen, P.K. (1979). Weak convergence of som quantile processes arising in progressively censored tests. Ann. Statist, 7, 414-431.
[11] Viveros, R., Balakrishnan, N. (1994). Interval estimation of life characteristics from progressively censored samples. Technometrics, 36, 84-91.
[12] Yuen, H.K., Tse, S.K. (1996). Parameters-estimation for Weibull distributed lifetimes under progressive censoring with random removals. J. Statistics. Comput. Simulation, 55, 57-71.