[1] Abbaszadeh, M., Chesneau, C. and Doosti, H. (2012), Nonparametric estimation of a density under bias and multiplicative censoring via wavelet methods, Statistics and Probability Letters, 82, 932-941.
[2] Antoinadis, A. and R. Carmona, Multiresolution analysis and wavelets for density estimation. Technical report, University of California, Irvine, 1991.
[3]
Chen, Y.
Chen, A. and
Kai W. Ng, (2010). The strong law of large numbers for extended negatively dependent random variables, Journal of Applied Probability, Volume 47,
Number 4 (2010), 908-922.
[4] Chesneau, C. and Hosseinioun, N. (2013), On the Wavelet Estimation of a Function in a Density Model with Non-identically Distributed Observations, Chilean Journal of Statistics, Vol. 3, No.1, 31-42.
[5] Chesneau, C. and Doosti, H. (2012), Wavelet linear density estimation for a GARCH model under various dependence structures, Journal of Iranian Statistical Society, 12. 1-21.
[6] Cossette, H.; Marceau, E.; Marri, F. On the compound Poisson risk model with dependence based on a generalized Farlie-Gumbel-Morgenstern copula. Insurance Math.
Econom. 43 (2008), no. 3, 444.455.
[7] Daubechies. I. (1992).Ten lectures on wavelets, CBMS-NSF regional conferences series in applies mathematics. SIAM, Philadelphia
[8] Daubechies .I. (1988). Orthogonal bases of compactly supported wavelets, Communication in pure and Applied Mathematics, 41, 909-996.
[9] Donoho, D. L, Johnstone, I. M. Kerkyacharian, G and Picard, D. (1995). Wavelet shrinkage: Asmptopia (with discussion). Journal of Royal statistical society, ser. B 57, (2), 301-370.
[10] Donoho, D. L., Johnstone, I. M. Kerkyacharian, G and Picard, D. (1996). Density estimation by wavelet thresholding .The Annals of statistics, 2, 508-539.
[11] Doukhan, P. and J.R. Loen (1990), Une note sur la déviation quadratique d'estimateurs de densités par projections orthogonales, C.R. Acad Sci. Paris, t310, série 1, 425-430.
[12] Hardle, W. Kerkyacharian, G. Picard, and Tsybabov, A. (1998). Wavelets Approximation and Statistical Applications. Springer-Verlag, New York.
[13] Hosseinioun. N, Doosti, H., and Nirumand. H.A., (2012). Nonparametric Estimation of the Derivatives of a Density by the method of Wavelet for mixing sequences", Statistical Paper, 53 (1), 195-203.
[14] Kerkyacharian,G,and picard , D. (1992). Density estimation in Besov spaces, Statistics and Probability Letters, 13-15, 24.
[15] Leblanc, F. (1996). Wavelet linear density estimator for a discete –time stochastic process:Lp –losses. Statistics and probability letters, 15, 209-213.
[16] Luo X., Tsai W.-Y., Xu Q.(2009). Pseudo partial likelihood estimators for Cox regression with missing covariates. Biometrika. 2009; 96.
[17] Meyer, Y. (1990). Ondelettes et Operateurs, Herman, paris.
[18] Mallat, S. (1989). A Theory for Multiresolution Signal Decomposition the Wavelet Representation, IEEE Trans. Pattern Anal. And Machine Intelligence, 31, 679-693.
[19] Prakasa Rao, B. L. S. (1983). Nonparametric Functional Estimation, Academic Press, Orlando.
[20] Prakasa Rao, B. L. S. (2003), wavelet linear density estimation for associated sequences. Journal of the Indian Statistical, Association, 41, 369-379.
[21] Tang, Q. and Vernic, R. The impact on ruin probabilities of the association structure among financial risks. Statistics and probability Letters, 77 (2007), no. 14, 1522.1525.
[22] Tribouley, k. (1995). Density estimation by cross-validation with wavelet method. Statistical Neerlandica, 45, 41, 62.
[23] Tribiel, H. (1992). Theory of Function Space . BrikhaBirkhauser Verlag, Berlin.
[24] Tribouley, k. (1995), Density estimation by cross-validation with wavelet method. Statistical Neerlandica, 45, 41, 62.