[1] علم شاهی، نجمه (1395). برآورد بهینه مجانبی موجک توابع روند تحت وابستگی دراز مدت، دانشگاه پیام نور مرکز مشهد.
[2] Bardet, J.M., Lang, G., Moulines, E. and Soulier, P. (2000).Wavelet estimator of long- range dependent processes. Stat. Inference Stoch. Process. 3 85–99. MR1819288.
[3] Beran, J. (1986). Estimation, testing and prediction for self-similar and related processes. Doctoral thesis, ETH, Zurich.
[4] Beran, J. (1994). Statistics for Long-Memory Processes. London: Chapman and Hall. MR1304490.
[5] Beran, J. and Feng, Y. (2002). SEMIFAR models – a semiparametric framework for modeling trends, long-range dependence and nonstationarity. Comput. Statist. Data Anal. 40 393– 419. MR1924017.
[6] Beran, J. and Shumeyko, Y. (2012). On asymptotically optimal wavelet estimation of trend functions under long-range dependence. Bernoulli, 2012, Vol. 18, No. 1, 137–176.
[7] Box, G.E.P. and Jenkins, G.M. (1970) Time series analysis: forecasting and control. Holden Day, San Francisco.
[8] Cox, D.R. (1984). Long-range dependence: a review. In H.A. David and H.T. David (eds), Statistics: An Appraisal. Proceedings of a Conference Marking the 50th Anniversary of the Statistical Laboratory, Iowa State University, pp. 55±74. Ames: Iowa State University Press.
[9] Craigmile, Peter F. and Percival, Donald B. Wavelet-Based Trend Detection and Estimation. WA 98195–4322. WA 98195–5640. WA 98109–3044.
[10] Donoho, D.L. and Johnstone, I.M. (1992). Minimax estimation via wavelet shrinkage. Technical Report No.402, Department of Stastistics, Stanford University, to appear in Ann Statist. 1997.
[11] Granger, C.W.J. and Joyeux, R. (1980). An introduction to long-range time series models and fractional differencing. J. Time Ser. Anal., 1, 15±30.
[12] Hall, P. and Hart, J.D. (1990a). Nonparametric regression with long-range dependence. Stochastic Process. Appl., 36, 339±351.
[13] Hosking, J.R.M. (1981). Fractional differencing. Biometrika, 68, 165±176.
[14] Hurst, H. (1951): Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers 116:770–808.
[15] Hurst, H. (1955). Methods of using long-term storage in reservoirs. Proceedings of the Institution of Civil Engineers, Part I: 519–577.
[16] Johnstone, I.M. and Silverman, B.W. (1997) Wavelet threshold estimators for data with correlated noise. J. Roy. Statist. Soc. Ser. B, 59, 319±351.
[17] KuÈnsch, H., Beran, J. and Hampel, F. (1993) Contrasts under long-range correlations. Ann. Statist., 21, 943±964.
[18] Mandelbrot, B. (1965). “Une classe de processus stochastiques homothetiques a soi; application a loi climatologique de H. E. Hurst,” Comptes Rendus Academic Sciences Paris, vol. 240, pp. 3274–3277.
[19] Mandelbrot, B. and Van Ness, J. “Fractional Brownian motions, fractional noises and applications,” SIAM Review, vol. 10, pp. 422–437, 1968.
[20] Mandelbrot, B. and Wallis, J. (1968). “Noah, Joseph and operational hydrology,” Water Resources Research, vol. 4, pp. 909–918.
[21] Mandelbrot, B. and Taqqu, M. (1979). “Robust R/S analysis of long-run serial correlation,” in Proceedings of the 42nd Session of the International Statistical Institute, pp. 69–104, Manila: Bulletin of the I.S.I.
[22] Mandelbrot, B. (1983). The Fractal Geometry of Nature. San Francisco: W. H. Freeman and Co. [22] Priestley, M. B. (1981). Spectral Analysis and Time Series. (Vol. 1): Univariate Series. London: Academic Press.
[23] Vidakovic, B. (1999). Statistical Modeling by Wavelets. New York: Wiley. MR1681904.
[24] Wang, Y. (1996). Function estimation via wavelet shrinkage for long-memory data. Ann. Statist. 24 466–484. MR1394972.
[25] Yajima, Y. (1991). Asymptotic properties of LSE in a regression model with long-memory stationary errors. Ann. Statist., 19, 158±177.