Test Statistic Distribution of Composite Hypothesis with Parameter Space Restriction in Continuous Multivariate Distribution

Document Type : Scientific Research

Author

Abstract

The null hypothesis testing of linear combination of p-dimensional parameter vector associated with an  known and full rank matrix against the one sided linear combination of parameter vector for a continuous multivariate distribution is considered. The general form of test statistic is computed by likelihood ratio method. Also, the asymptotic null distribution of test statistic is derived by limit theorems according to the chi-square distribution and critical values of test statistic for different significance levels computed and power of test estimated by using Monte Carlo simulation. The numerical examples associated with the problem of testing are presented. All the results of this paper are for independently and identically distributed random vectors. Also, the results are established for a continuous univariate distribution.

Keywords


بازیاری، ا.، چینی‏پرداز، ر. و راسخی، ع.ا. (1390). آزمون فرض تساوی میانگین‏ها در مقابل فرض مرتب شده در توزیع نرمال چند متغیره، مجله مدل‏سازی پیشرفته ریاضی، دوره 1، شماره 1.
بازیاری، ا. (1394). منظرهایی از آزمون فرضیه میانگین‏های مرتب شده در توزیع‏های نرمال یک متغیره و چند متغیره، پذیرش برای چاپ در مجله علوم آماری.
 
Bartholomew, D.J. (1959a). A test of homogeneity for ordered alternatives. Biometrika, 46, 36-48.
Bartholomew, D.J. (1959b). A test of homogeneity for ordered alternatives II. Biometrika, 6, 328-335.
Bazaraa, M. S., Sherali, H.D. and Shetty. C.M. (1993). Nonlinear Programming: Theory and Algorithms. Springer-Verlag, Berlin.
Bazyari, A. and Chinipardaz, R. (2012). A Test for Order Restriction of Several Multivariate Normal Mean Vectors against all Alternatives when the Covariance Matrices are Unknown but Common, Journal of Statistical Theory and Applications, 11(1), 23-45.
Bazyari, A. and Chinipardaz, R. (2013). Upper Bound for Value of the Test of Multivariate Normal Ordered Mean Vectors against all Alternatives, Communications in Statistics-Theory and Methods, 42, 1748–1758.
Bazyari, A. and Pesarin, F. (2013), Parametric and Permutation Testing for Multivariate Monotonic Alternatives, Statistics and Computing, 23, 639–652.
Cox, D.R. and Hinkley, D.V. (1974). Theoretical Statistics. Chapman and Hall, London.
Gourieroux, C., Holly, A. and Monfort, A. (1982). Likelihood ratio tests, Wald test, and Kuhn-Tucker test in linear models with inequality constraints on the regression parameters. Econometrica, 50, 63-80.
Kudo, A. (1963). A multivariate analogue of the one-sided test. Biometrika, 50, 403-418.
Kudo, A. and Choi, J.R. (1975). A generalized multivariate analogue of the one-sided test. Memoirs of the Faculty of Science, Kyushu University, 29(2), 303-328.
Perlman, M.D. (1969). One-sided testing problems in multivariate analysis. The Annals of Mathematical Statistics, 40(2), 549-567.
Robertson, T., Wright, F.T. and Dykstra, R.L. (1988). Order Restricted Statistical Inference. John Wiley, New York.
Sasabuchi, S. and Kulatunga, D.D. (1985). Some approximations for the null distribution of the  statistic used in order restricted inference. Biometrika, 72, 476-480.
Sen, P.K. and Singer, J.M. (1993). Large Sanple Methods in Statistics: An introduction with applications. Chapman and Hall, London.
Shapiro, A. (1985). Asymptotic equivalence of minimum discrepancy function estimatiors to G.L.S. estimators. South African Statistical Journal, 19, 73-81.
Shapiro, A. (1988). Towards a unified theory of inequality constrained testing in multivariate analysis. International Statistical Review. 56, 49-62.
Silvapulle, M.J. (1994). On tests against one-sided hypotheses in some generalized linear models. Biometrics, 50, 853-858.
Silvapulle, M.J. (1996). On an -type statistic for testing one-sided hypotheses and computation of chi-bar-squared weights. Statistics and Probability Letters. 28, 137-141.
Silvapulle, M.J. and Sen, P.K. (2005). Constrained Statistical Inference: Inequality, Order, and Shape Restrictions, John Wiley, New York.
Tang, D.I., Gnecco, C. and Geller, N. (1989). An approximate likelihood ratio test for a normal mean vector with nonnegative components with application to clinical trials. Biometrika, 76, 577-583.